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Exchange and Correluation Effects in an Inhomogeneous Electron Gas*

W. Kohn and L. J. Sham
University of Culifornia, San Diego

Lan Jolla, California

ABSTRACT

From n theory of Hohenberg and Kohin, apprceximation methods
for trealing an inhomorencous cystem of interacting electrons are
developed. They lead to self-consistent eguations analagous to the
Hartree and Hartree-Foc® ¢ juations, respectively. In these equa-
tiong the exchange and correlation porticns of the chemical poten-
tial of a uniform clectron gas appear =s corrections to the electro-

static potential.

* Supported in part by the Office of Naval Research.
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It has been shownl that the ground state energy of an interact-
ing inhomogeneous electron gas .n a static potential v(g) can be written

in wae form

. ..on(z) n(z")
E = r v(r) n(r) dr + = Rf —T——————T— dr dr' + G[n] (1)
’ R F A o

where n(r) is the density and G'n] is & universal functional of the
dencity. This expression, furthermore, is a minimum for the correct
dengty function n(;). In this note we propose an approximation for
Gn), which leads to a scheme analogous to Hartree's method but con-
tainy the major part of the effects of exchange and correlation.
We first write
Gn) = T [n] + E_[n] (2)

wherc Ts[n] is the kinetic energy of a system of non-interacting
electrons with density n(;)2 and Exc[n] is, by our definition, the
exchenge and correlation energy of an interacting system with density
n(r). TFor an arbitrary n(r) one can of course give no simple exact
e<pression for Exc[n]. However, if n(r) is sufficiently slowly vary-

ing, we can showl that

B, (0] = [ n(z) ¢, (n(z)) ax (3)

# Supported in part by the Office of Naval Research.
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where ¢ C(n) is the exchange and correlation energy per electron of
p

a wiiform electron gas of density n. We propose (3) as our approxi-
nation even when n(r) is not slowly varying and shall regard € o B85
known from theories of the homo;jeneous electron gas.3

From the stationary property of (1) we now obtain, subject to

the condition

the rcquation

A _ 6Tsfn“
Jén(r;) olz) + = = < B <n(£)>’ dr = 0 ; (5)
here
n(z') p
o) = vig) [ e o (6)
and
b, (n) = % <nexc(n)> (7)

i the excnange and correlation contribution to the chemical potential
o' a uniform gas of density n.

Egs. (&) and (5) are prccisely the same as one obtains from the
tneory of ref. 1 when applied to a system of non-interacting electrons,
woving in the given potential o(r) + T <n(§)> . Therefore, for given
¢ and u, one obtains the n(r) which satisfies these equations simply by

solving the one-particle Scnroedinger equation

[- 72 4 [v(;) * B (n(§)>] ] 41 () = ey, (x) ()



ind setting

¥

n(@) =y ju @), (9)

i=1
wher2 N is the number of electruns.
Egs. (6) - (9) nave to ve solved self-consistently: One begins
with en assumed n(r), construct. ¢(r) from (6) and b, from (7), and

inds a new n(r) from (8) and (9). The energy is given by

% ic physically very citisfactory that w . appears in K. (8)
as an additional effective potei.tial so that differences of b lead
10 p.essures on tne electron fluid in a manner familiar from thexrmo-
dynawics.

The results of this procedure are exact in tne following limit-
ing cases: (1) when n(z) is slowly varying, (2) when ¢ dominates over
b (as near an atomic nucleus), and (3) when n is very large.

The method differs from Slater's method of the "exchange hole”u
in two ways: (1) Slater's method does not include correlation effects,5
end (2) more importantly, the Slater effective exchange potential is 3/&
ci’ HK, the exchange part of the correction potential e in our method.
One can verify by a study of the slowly varying case that our result is
corract.

It is also possible to obtain a scheme which includes exchange

effecis exactly, by writing in place of Eq. (3)



vher::

[n] = B, [n] + _/d; n{r) :, <n(§)> (11)

B [n] i6 the exchange one gy in a Hartree-rock system with

cens ty ni{r). This leuds in pl.:c of (8) to a Hartree-rFock iype

cgua -ion.

»d
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The cwae approach, whith ppropriately extended, also gives simple

‘25w L5 for a nwsber of otvher cl.oowronic properties. /fwmong the solid

applications are cohesive :wmergies, clastic constants, rerml sur-

fuces, electronic specific heut, and energy banls. DJetails will be given

in a iuture publication.
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